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Point pattern matching based on kernel partial least squares
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Point pattern matching is an essential step in many image processing applications. This letter investigates
the spectral approaches of point pattern matching, and presents a spectral feature matching algorithm
based on kernel partial least squares (KPLS). Given the feature points of two images, we define position
similarity matrices for the reference and sensed images, and extract the pattern vectors from the matrices
using KPLS, which indicate the geometric distribution and the inner relationships of the feature points.
Feature points matching are done using the bipartite graph matching method. Experiments conducted on
both synthetic and real-world data demonstrate the robustness and invariance of the algorithm.
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Point matching and correspondence problems arise in
various application areas such as computer vision, pat-
tern recognition, machine learning, and so on. In 1993,
Cox et al. gave an overview of the different types of
transformations and methods[1]. The advantage of point
set representations of shapes over other forms such as
curves and surfaces is that the point set representation
is a universal representation of shapes regardless of the
topologies of the shapes[2].

Given two or more images represented using points,
we can match these point patterns to determine a trans-
formation between coordinates of the point sets. Such
transformations capture changes in the geometry charac-
terized by the given points. Feature points are the sim-
plest form of features, which are basically represented by
the point locations. Feature points often serve as the ba-
sis upon which other more sophisticated representations
(such as curves and surfaces) are built. They can also be
regarded as the most fundamental of all features. Topo-
logical and geometrical relations between features contain
important information to constrain the large space of pos-
sible mappings between features[3]. Feature points can be
matched either by considering the radiometric properties
of surrounding pixels or the geometric distribution of the
whole set of feature points across the image[4]. Spectral
graph theory is a term applied to a family of techniques
that aim to characterize the global structural properties
of graphs using eigenvalues and eigenvectors of similar-
ity matrices[5,6]. The spectra can indicate the geometric
distribution of feature points. Graph spectral methods
have been extensively used for correspondences between
feature point sets[7−9]. Scott et al. first used a Gaus-
sian weighting function to build an inter-image similarity
matrix between feature points in different images being
matched, and performed singular value decomposition on
the similarity matrix to get correspondences from the
similarity matrix’s singular values and vectors[7]. How-
ever, this method fails when the rotation or scaling be-
tween the images is too large. To overcome this problem,
Shapiro et al. constructed intra-image similarity matri-
ces for the individual point sets being matched with the
aim of capturing the relational image structure[8]. The

eigenvectors of the individual similarity matrices are used
in the matching process. This method projects the indi-
vidual point sets into an eigenspace and seeks matches
by looking for the closest point correspondence. Wang
et al. investigated the performance of the kernel princi-
pal component analysis (PCA) using a polynomial kernel
function for solving the point correspondence problem[9].
Such approaches characterize the graphs by their domi-
nant eigenvectors. However, these eigenvectors are com-
puted independently for each graph, thus they often do
not capture the co-salient structures of the graph. The
kernel partial least squares (KPLS) approach helps ex-
tract representations from the two images containing rel-
evant information needed for the matching of the partic-
ular pair of images.

This letter presents a method of spectral feature match-
ing based on KPLS. Using KPLS components, the spec-
tral features are constructed with information on the
position similarity matrices, invariant to translation,
scale, and rotation, and very suitable for feature-based
matching.

In general, intrinsic point representations can be ob-
tained via the position similarity matrix, specified by a
symmetric affinity matrix S = {sij}, where sij ≥ 0 char-
acterizes the similarity between points xi and xj . One
may view the position similarity matrix S as a data vec-
tor whose n rows represent n-dimensional data points.

Although the position similarity matrices contain con-
siderable shape information, one cannot compare such
representations for two point sets directly without proper
point mapping. The high dimensional representations
may contain a great deal of redundancy, resulting in un-
necessarily high computational costs[10]. These obser-
vations naturally lead us to consider transforming two
point sets into some information-preserving subspaces.
This can be accomplished through KPLS on the position
similarity matrices.

Partial least squares (PLS) method, which was ini-
tially developed by Wold et al.[11], has been a tremen-
dously successful method for data analysis in the chemo-
metrics and chemical industries. The robustness of
the generated model also makes the PLS approach a
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powerful tool for dimensionality reduction, discrimina-
tion, and classification technique; it is being applied to
many other areas such as process monitoring and image
processing[12−14]. In its general form, PLS creates com-
ponents using the existing correlations between different
sets of variance while keeping most of the variance of both
sets. KPLS is a modification of PLS through the use of
kernels. Following the theoretical and practical results
reported in Ref. [14], KPLS seems to be preferred to the
kernel PCA when a feature space dimensionality reduc-
tion with respect to data discrimination is employed.

We consider a general setting of the PLS algorithm
to demonstrate the relation between two data sets. An
N -dimensional vector of variables is denoted as x =
(x1, · · · , xN ) in the first block of data, and similarly,
y = (y1, · · · , yN ) denotes a vector of variables from
the second set. Observing the n data samples from
each block of variables, PLS decomposes X = (xij)n×N ,
Y = (yij)n×N into the form

X = TPT + F,

Y = UQT + G,

where T and U are (n × r) matrices of the extracted r
components, and the (N × r) matrices P and Q repre-
sent the matrices of the projections. The n×N matrices
F and G are the matrices of the residuals. The PLS
method, which in its classical form is based on the non-
linear iterative partial least squares (NIPALS) algorithm,
finds the projection axes w and c such that[11]

max S = tTu = (Xw)T(Yc) = wTXTYc

s.t.

{
wTw = ‖w‖2 = 1 .

cTc = ‖c‖2 = 1
(1)

The solution to this optimization problem is given by the
following eigenvalue problem[15]:

XTYYTXw = λw,

where λ is the eigenvalue associated with w. The com-
ponent of X is then given as t = Xw.

Similarly, the extraction of the component of Y is given
as

XXTYYTt = λt, (2)

u = YYTt. (3)

Like other kernel-based algorithms, KPLS is based on
mapping the original data into feature space, in which a
linear regression function is constructed. We consider a
nonlinear transformation of x into a feature space F. In
this case, the projection axes w and c cannot be com-
puted. Using the straightforward connection between a
reproducing kernel hilbert space and F, Rosipal et al.
extended the linear PLS model into its nonlinear kernel
form[16]. This extension effectively represents the con-
struction of a linear PLS model in F.

The feature space F could have an arbitrarily large,
possibly infinite dimensionality related to the data space
by a possibly nonlinear map φ : x → φ(x). Φ denotes
the matrix of the mapped data space φ(x) into a fea-
ture space F. Using the kernel method, we can obtain

K = ΦΦT, where Kij = K(xi, xj) is the Gram matrix.
Similarly, we consider a mapping of the second set of

variables y into a feature space F1, and denote it as Ψ,
the matrix of the mapped data space ψ(y) into a fea-
ture space F1. Analogous to K, we define the kernel
Gram matrix as K1 = ΨΨT, given by the kernel func-
tion K1(·, ·). We can use K = 〈Φ,Φ〉 and K1 = 〈Ψ,Ψ〉
instead of XXT and YYT because XXT = 〈X,X〉 and
YYT = 〈Y,Y〉 are inner product forms. Using this no-
tation, the estimates of t and u can be reformulated into
its nonlinear kernel variant (KPLS) from Eqs. (2) and
(3):

KK1t = λt,
u = K1t.

When the data in the feature space do not contain zeros,
the mean 1

n

∑
i

Φ(xi) is subtracted from all points. This

leads to a slightly different expression

K =
(
In − 1

n
1n1T

n

)
K(In − 1

n
1n1T

n ),

where 1n = (1, · · · , 1)T.
Similarly, K1 = (In − 1

n1n1T
n )K1(In − 1

n1n1T
n ).

We select feature point sets from the reference im-
age and the sensed image, and denote them as X =
(x1, x2, · · · , xn) and Y = (y1, y2, · · · , yn), respectively.
Our objective is to establish a one-to-one point corre-
spondence between the two data sets.

Using the feature point sets, we construct position sim-
ilarity matrices by the Gaussian kernel function, (Sx)n×n

and (Sy)n×n:

(Sx)ij = exp
[
− d(xi, xj)2

σ2
x

]
,

and (Sy)ij = exp
[
−

d(yi, yj

)2

σ2
y

],

where d(xi, xj) is the Euclidean distance between the
feature points xi and xj , and σx, σy are the adjustable
parameters. Every feature point corresponds to an
ndimensional feature vector, xi → (Sx)i, yj → (Sy)j .

Theorem 1. Under criterion (1), the number of com-
ponents is rank(ST

x SyST
y Sx) (the number of non-zero

eigenvalues of matrix ST
x SyST

y Sx) pairs at most. r(≤
rank(ST

x SyST
y Sx)) pairs of components are composed of

vectors selected from the eigenvectors corresponding to
the first r maximum eigenvalues of the eigenequations

SxST
x SyST

y T = λ2T, (4)

SyST
y SxST

x U = λ2U, (5)

where T = [t1, · · · , tr], U = [u1, · · · , ur].
See Ref. [17] for detailed proof.
Similarly, let K = SxST

x , K1 = SyST
y . Thus, we can

derive Theorem 2 from Theorem 1 easily.
Theorem 2. Under criterion (1), the number of com-

ponents is rank(ST
x SyST

y Sx) (the number of non-zero
eigenvalues of matrix ST

x SyST
y Sx) pairs at most. r(≤

rank(ST
x SyST

y Sx)) pairs of components are composed of
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vectors selected from the eigenvectors corresponding to
the first rmaximum eigenvalues of eigenequations

KK1T = λT,

K1KU = λU,

where T = [t1, · · · , tr], U = [u1, · · · , ur].
The feature point xi in the reference image corresponds

to the KPLS pattern vector (T)i = [ti1, ti2, · · · , tir],
which are the projections in the r-dimensional eigenspace
spanned by T. The feature point yj in the sensed im-
ages corresponds to the KPLS pattern vector (U)j =
[uj1, uj2, · · · , ujr], which is the projections in the r-
dimensional eigenspace spanned by U. Thus, if the
arbitrary numbering of two feature points in an image
is changed, their KPLS pattern vectors simply change
positions in T(or U), and the matching of the feature
points can be converted to the matching of the KPLS
pattern vectors. The Euclidean distance is invariant to
the similarity transformation[10]. Hence, the KPLS pat-
tern vectors have invariance.

In the last decade, numerous techniques have been
proposed to tackle the feature point matching prob-
lem, such as iterative closest point (ICP)[18], graph
matching[19−21], and cluster approach[22]. Among these
methods, the ideas of the graph matching algorithm are
very attractive. In graph matching, feature points are
modeled as graphs, and feature matching amounts to
finding a correspondence between the nodes of different
graphs. In this letter, bipartite matching method[23] is
applied in feature matching. We extract feature points
from the reference and sensed images. The KPLS pattern
vectors (T and U) are then computed for the feature
point sets as vertices for a bipartite graph. We apply
bipartite graph matching algorithms to this graph to
obtain the set of edges in the optimal matching, which
represents the correspondence.

To make the algorithm more robust, the mismatching
feature points can be eliminated by the local continu-
ity constraint (the continuity constraint requires that
neighboring points in the reference match neighboring
points in the sensed). This constraint is reasonable for
most images. We can examine the correspondences of
the neighbors of the matched interest points to eliminate
mismatching.

Now we investigate the performance of the method of
point pattern matching based on KPLS. In experiments,
the robustness of the KPLS approach described above
with random point sets is shown, the invariance of the
KPLS pattern vectors on synthetic images is verified, the
matching performances of the KPLS approach described
above and the method of Ref. [9], are compared, and the
remote sensing image. In addition, we use this algorithm
to solve the non-rigid mapping.

We investigated the effect of the controlled affine skew
of the point sets. The reference point set was randomly
generated. Then, the reference point set was transformed
by parameters (translation x=0.1, translation y=0.1,
rotation angle=30◦, scaling factor=1.2) to obtain the
sensed data set. Figure 1 shows the matching results.
We then focused on the performance of the algorithms
when the data were under affine transformations and
contained uncertainties such as outliers and noise. For

this purpose, we added noise to the sensed data. The
reference data set is the same as that used above, and
five outliers were added to the sensed data set. Figure
2 shows the matching results. It can be seen that the
KPLS algorithm presents a strong ability to eliminate
incorrect matches.

To provide more quantitative evaluations, we also
tested the algorithm on synthetic images. Here, we have
matched images from a gesture of a hand. The feature

Fig. 1. (a) Reference data set and (b) sensed data set without
outliers, and (c) the match between the two data sets found
with our implementation. The circles in (c) are the reference
data and the crosses are the sensed data.

Fig. 2. (a) Reference data set and (b) sensed data set with
outliers, and (c) the match between the two data sets found
with our implementation.
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points in these images are points of maximum curvature
on the outline of the hand. Figure 3 shows the final
configuration of correspondence matches obtained using
our method. From these experiments, we can see that
the KPLS pattern vectors are invariant to rotation and
scaling.

We tested our algorithm on the Carnegie Mellon Uni-
versity (CMU) house sequence, and compared the per-
formance of our method with that of the method of Ref.
[9]. The images used in our study correspond to different
camera viewing directions. The corner points in each

Fig. 3. (Point matching result on the hand images. Top row:
the correspondences between the hand-rotation (left) and the
registration result (right). Bottom row: the correspondences
between the hand-scaling (left) and the registration result
(right).

Fig. 4. Point matching result on the CMU house sequence.
Top row: our approach. Bottom row: the kernel PCA
method.

Fig. 5. (a) Band-1 and (b) band-2 images.

image were detected by the Harris detector. The first
frame was tested against the remaining frames. Figure
4 shows the correspondences when we matched the first
frame to the fourth and the sixth frames. The experi-
mental results are summarized in Table 1. From these
results, our method clearly performs better than Wang
and Hancock’s method.

To test our algorithm on a real world situation, we ap-
plied our method to a two-dimensional (2D) image reg-
istration with an affine model. We took two images from

Table 1. Summary of the Experimental Results on
the CMU House Sequence

Image 1−2 1−3 1−4 1−5 1−6

Correctly Matched
28 22 28 28 26

(Our Approach)

Rate of Matched
100 79 100 100 93

(Our Approach) (%)

Correctly Matched
24 20 22 22 20

(Method of Ref. [9])

Rate of Matched
86 71 79 79 71

(Method of Ref. [9]) (%)

Fig. 6. (a) Correspondences of feature points between the im-
ages and (b) registration result computed with the proposed
approach.

Fig. 7. (a) Reference image and (b) sensed image.
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Fig. 8. Correspondences of points between the images.

the same area. The feature points in each image were de-
tected by a Harris detector. We then tried to match them
using our implementation. Figure 5 shows the two multi-
spectral images (band-1 and band-2). Figure 6 shows our
registration result.

We tested our algorithm on non-rigid transformations.
The reference image that we chose comes from a Chinese
character (blessing), which is a rather complex pattern.
Figure 7 shows the character images and Fig. 8 shows
the results of the matching.

In conclusion, we investigate the spectral approaches to
the problem of point pattern matching. First, we show
how KPLS can be effectively used for solving the point
pattern matching problem. We use the KPLS pattern
vectors of feature point sets from both reference and
sensed images to establish their correspondences. The
KPLS pattern vectors indicate the geometric distribu-
tion of the feature points, and are invariant to transla-
tion, scale, and rotation. We then use robust methods for
the points correspondence by the continuity constraint.
Results show that the method can deal with non-rigid
transformation. Further work has to be done in order to
obtain more robust results using more matching feature
points to get better mapping approximations and to work
with feature point sets of different sizes.
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